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by searches for trilepton events, to be around 270 GeV.
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1. Introduction

Theories beyond the standard model which include several new particles at the TeV scale and

a new discrete symmetry lead to cascade decays with interesting signatures at colliders. At the

same time, the discrete symmetry reduces the contributions of new particles to electroweak

observables, allowing the new particles to be light enough such that they can be copiously

produced not only at the LHC, but perhaps even at the Tevatron. Classic examples of such

theories include supersymmetric models with R-parity, universal extra dimensions [1], and

Little Higgs models with T -parity [2]. Typically, the cascade decays in these models lead to

observable events with up to four leptons and missing transverse energy [3, 4].

– 1 –



In this paper we show that more spectacular events, with five or six leptons, or one

photon and several leptons, are predicted in the 6-dimensional standard model (6DSM). This

model [5], in which all standard model particles propagate in two universal extra dimensions

compactified on the chiral square [6, 7, 8], is motivated by the prediction based on anomaly

cancellations that the number of fermion generations is a multiple of three [9], and by the

long proton lifetime enforced by a remnant of 6D Lorentz symmetry [10].

The larger number of leptons and the presence of photons is due to the existence of

‘spinless adjoint’ particles, the Kaluza-Klein (KK) modes of gauge bosons polarized along

extra dimensions. Compared to five-dimensional (5D) models where such fields become the

longitudinal components of the KK vector bosons, in six-dimensional (6D) gauge theories

there is an additional field for each KK vector boson, which represents a physical spin-0

particle transforming in the adjoint representation of the gauge group [5].

The 6DSM has a KK parity corresponding to reflections with respect to the center of the

chiral square. Its consequences are similar to the ones in the case of a single universal extra

dimension [11], where KK parity is the symmetry under reflections with respect to the center

of the compact dimension. It is well known that in the 5D case KK parity ensures the stability

of the lightest KK particle (LKP). Furthermore, loop corrections select the KK mode of the

hypercharge boson to be the LKP [12], and that is a viable dark matter candidate [13]. The

same is true in the 6DSM, with the additional twist that the LKP in that case is a spinless

adjoint. In fact, one-loop mass corrections in this model lift the degeneracy of the modes at

each KK level, making all spinless adjoints lighter than the corresponding vector bosons [14].

Particles on the first KK level, having KK numbers (1,0), are odd under KK parity. As

a result, they may be produced only in pairs at colliders, and each of their cascade decays

produces an LKP, which is seen as missing transverse energy in the detector. The goal of

this paper is to determine the main signatures of (1,0) particles at hadron colliders. Particles

on the second level, which have KK numbers (1,1) and are even under KK parity, lead to a

completely different set of signatures, mainly involving resonances of top and bottom quarks

[5].

We review the 6DSM in Section 2, and then proceed in Section 3 to calculate decay widths

for (1, 0) modes. We analyze the production of these particles at the LHC and Tevatron in

Section 4, and compute rates for events with leptons and photons. Several comments regarding

our results are given in Section 5. Feynman rules for this model are given in Appendix A.

Details of the calculations of one-loop 2-body and tree-level 3-body decay widths for spinless

adjoints and vector bosons can be found in Appendices B and C, respectively.

2. Two universal extra dimensions

We assume that all standard model fields propagate in two flat extra dimensions, of coor-

dinates x4 and x5, compactified on a square of side L = πR with adjacent sides identified

in pairs (see Figure 1). This compactification predicts that the fermion zero modes are chi-
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Figure 1: Chiral square compactification (left) and level-1 KK function f
(1)
0 (x4, x

5) for standard

model fields (right).

ral, and therefore may represent the observed quarks and leptons. Furthermore, this ‘chiral

square’ is invariant under rotations by π about its center. The ensuing Z2 symmetry, known

as KK parity, implies that the lightest KK-odd particle is stable.

Equality of the Lagrangian densities on adjacent sides of the square is achieved by enforc-

ing that bulk fields and their first derivatives vary smoothly across the boundary. Applying

these boundary conditions to solve the 6D equations of motion for these fields, by separation

of variables, we find that the dependence on x4 and x5 can be expressed in terms of one

of four complete and orthonormal sets of functions f
(j,k)
n with n = 0, 1, 2, 3, where the KK

numbers (j, k) are integers and j ≥ 1, k ≥ 0 or j = k = 0. All (j, k) modes have tree-level

mass
√

j2 + k2/R before electroweak symmetry breaking.

2.1 Interactions of the (1,0) modes

We are primarily interested in the phenomenology of the (1, 0) modes here. We loosely refer

to these as ‘level-1’ modes because they are the lightest nonzero KK modes. For notational

brevity we will label them using the superscript (1).

The level-1 KK modes belonging to a tower that includes a zero mode has a KK function

f
(1)
0 (x4, x5) = cos

(x4

R

)

+ cos
(x5

R

)

, (2.1)

which is plotted in Figure 1. This is the case for the KK modes of all spin-1 fields and

fermions of the same chirality as the observed quarks and leptons, as well as the Higgs doublet.

The spinless adjoint field, A
(1)
H , which is the uneaten combination of the extra-dimensional

polarizations of the 6D gauge field, is associated with a KK function which is independent of

x4,

f
(1)
H = −1

2

[

f
(1)
1 (x4, x5) − f

(1)
3 (x4, x5)

]

= − sin
x5

R
, (2.2)
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while the longitudinal component of the vector KK modes is associated with a KK function

which is independent of x5:

f
(1)
G = − i

2

[

f
(1)
1 (x4, x5) + f

(1)
3 (x4, x5)

]

= sin
x4

R
. (2.3)

KK modes of fermions come in vectorlike pairs with the component of 4D chirality opposite

to the corresponding standard model fermion having KK function f1 or f3, depending on the

6D chirality.

Integrating over the extra dimensional coordinates gives the 4D effective Lagrangian,

which contains kinetic and interaction terms for all SM particles and their KK modes. We

limit ourselves to detailing in this section only the couplings of the standard model fields with

the level-1 KK modes; the latter are odd under KK parity and so only appear in pairs. The

general Lagrangian for all modes is derived in Ref. [6, 7], while the couplings for all fermion

modes can be found in Appendix B.

The SU(3)c gauge interactions include the following tree-level couplings between zero

modes and (1, 0) modes:

Lgauge ⊃ gsf
abc
[

G(1)a
µ

(

∂µGν(1)b − ∂νGµ(1)b
)

G(1)c
ν − G(1)a

µ G(1)b
ν ∂µGνc + G

(1)a
H ∂µG

(1)b
H Gc

µ

]

− g2
s

2

[

fabdfaceG(1)b
µ Gµ(1)cGd

νG
νe +

(

fabcfade + fadcfabe
)

G(1)b
µ GµdG(1)c

ν Gνe
]

+
g2
s

2
fabcfadeG

(1)c
H G

(1)e
H Gb

µGµd , (2.4)

where gs is the QCD gauge coupling, fabc are the SU(3)c structure constants, and G
(1)
µ

and G
(1)
H are the level-1 vector and spinless adjoint KK modes of the gluon Gµ. We have

suppressed all superscripts for zero modes. There are also interactions of the quark modes

with the QCD vector and spinless modes:

Lmatter ⊃
∑

fermions

gsQ
(1)
± Ga

µT aγµQ
(1)
± + gs

[

Q
(1)
± G(1)a

µ T aγµPL
R
Q± − iQ

(1)
± G

(1)a
H T aPL

R
Q± + H.c.

]

,

(2.5)

where fermions with 6D chirality + contain left-handed zero modes, and fermions with 6D

chirality − contain right-handed zero modes. The SU(2)W and U(1)Y sectors are analogous,

with all the gauge self-couplings set to zero in the Abelian case. The Higgs and ghost terms

are given in Ref. [6, 7].

2.2 Mass corrections

Computing radiative corrections in this theory involves taking sums over KK modes, or

momenta in the extra dimensions, which fourier transform to operators localized at the corners

– 4 –



of the chiral square, (0, 0), (πR, πR) and (0, πR) ∼ (πR, 0). The most general 4D effective

Lagrangian must therefore allow for these [14]:

Leff =

∫ L

0
dx4

∫ L

0
dx5

[

Lbulk +

(

δ(x4)δ(x5) + δ(L − x4)δ(L − x5)

)

L1 + δ(L − x5)L2

]

,

(2.6)

where L1 and L2 contain all localized operators. Note that KK parity ensures the equality of

the operators localized at (0, 0) and (L,L). Local operators break 6D Lorentz invariance and

hence give rise to mass corrections for KK particles. Such terms are important for models of

flat extra dimensions since they allow for the decays of higher modes into pairs of lower ones,

a process which would otherwise be on threshold at best due to the quantization of KK mode

masses. They also make for a more interesting phenomenology by lifting the degeneracy of

states at each level.

The localized terms contain contributions from ultraviolet physics as well as from run-

ning down from the cut-off. Being unable to compute the former, we assume that they are

generically smaller than the logarithmically-enhanced one-loop terms which are calculable

(for further discussion see [14, 12]). Level-1 fermions acquire the following mass corrections

[5]:

δ(MQ+) =

(

16

3
g2
s + 3g2 +

1

9
g′2 +

5

8
λ2

Q+

)

l0
R

+
1

2
m2

qR ,

δ(MQ−) =

(

16

3
g2
s + 4g′2y2 +

10

8
λ2

Q−

)

l0
R

+
1

2
m2

qR ,

δ(ML+) =
(

3g2 + g′2
) l0

R
,

δ(ME−) =
g′2

4π2

l0
R

, (2.7)

where gs, g and g′ are the SU(3)c × SU(2)W × U(1)Y gauge couplings, λQ± are the Yukawa

couplings of Q± to the Higgs doublet, and l0 is a common loop factor,

l0 =
1

16π2
ln (ΛR)2 . (2.8)

An estimate of the cutoff of the effective theory, based on naive dimensional analysis, gives

Λ ≈ 10/R [5]. The terms linear in R shown in Eq. (2.7) are small corrections to the tree-level

masses due to electroweak symmetry breaking masses, mq.

The (1,0) vector bosons also receive radiative corrections to their masses,

δM
G

(1)
µ

= 4g2
s

l0
R

,

δM
W

(1)
µ

=
123

24
g2 l0

R
,

δM
B

(1)
µ

= −165

24
g′2

l0
R

, (2.9)

– 5 –



boson MR fermion MR

G
(1)
µ 1.392 Q

(1)3
+ 1.265 + 1

2 (mtR)2

W
(1)
µ 1.063 + 1

2(MW R)2 T
(1)
− 1.252 + 1

2 (mtR)2

G
(1)
H 1.0 Q

(1)
+ 1.247

B
(1)
µ 0.974 U

(1)
− 1.216

W
(1)
H 0.921 + 1

2(mW R)2 D
(1)
− 1.211

B
(1)
H 0.855 L

(1)
+ 1.041

E
(1)
− 1.015

400.

450.

500.

550.

600.

650.

700.

M
[G

eV
]

G
(1)
µ

W
(1)
µ

B
(1)
µ

G
(1)
H

W
(1)
H

B
(1)
H

Q
3(1)
+

Q
(1)
+

D
(1)
−

T
(1)
−

U
(1)
−

L
(1)
+

E
(1)
−

1/R = 500 GeV

Table 1: Masses of the (1,0) particles in 1/R units (left). The (1,0) Higgs particles are not included

here because their masses are quadratically sensitive to the cutoff scale. The right-hand panel shows

the spectrum for 1/R = 0.5 TeV.

while only the spinless adjoints in the electroweak sector have mass corrections:

δM
G

(1)
H

= 0

δM
W

(1)
H

= −51

8
g2 l0

R
+

m2
W R

2
,

δM
B

(1)
H

= −307

8
g′2

l0
R

. (2.10)

The above mass shifts include negative contributions from fermions in loops, allowing for

overall negative corrections to masses. This is especially important when there are no self-

interactions to compete with the fermion interactions, as is the case with for the hypercharge

bosons.

The masses of the (1,0) particles are given in Table 1 in units of 1/R. The mass shifts

are evaluated there for gauge couplings gs = 1.16, g = 0.65 and g′ = 0.36, which are the

values obtained using the standard model one-loop running up to the scale 1/R = 500 GeV,

We will use the masses from Table 1 throughout the paper, ignoring further running of the

gauge couplings above 500 GeV (note that the standard model running of the gauge couplings

between 500 GeV and 1 TeV results in only a 3% change in gs and negligible changes in g and

g′; however, above ∼ 1/R the running is accelerated by the presence of the level-1 modes).

The KK modes of the Higgs doublet have mass-squared shifts which are quadratically

sensitive to the cutoff scale Λ [12]. Hence, the masses of the (1,0) Higgs scalars may be treated

– 6 –



as free parameters (determined by the underlying theory above Λ, which is not specified in

our framework). Furthermore, additional structures such as the Twin Higgs mechanism [15]

may be used to cancel the quadratic divergences in models with universal extra dimensions

[16], potentially affecting the (1,0) Higgs sector. We assume here that the (1,0) Higgs particles

are heavier than 1/R. In that case, the hadron collider phenomenology is mostly independent

of the exact (1,0) Higgs masses.

2.3 Loop-induced bosonic operators

In addition to lifting the degeneracy of the (1, 0) masses, loop corrections also contribute to the

following dimension-5 operators that are of particular interest for computing the branching

fractions of the (1, 0) bosons:

−R

4

(

CBǫµναβFµνB
(1)
αβ B

(1)
H + CGǫµναβGµνB

(1)
αβ G

(1)
H

)

, (2.11)

where Fµν and Gµν are the field strengths of the photon and gluon, respectively, B
(1)
αβ is the

field strength of the (1, 0) hypercharge vector boson B
(1)
α , and B

(1)
H is the U(1)Y spinless

adjoint. These operators account for the only significant 2-body decay channels open to the

level-1 KK modes G
(1)
H and B

(1)
µ . The analogous operator with the photon replaced by the Z

boson is less relevant because the corresponding decay width is phase-space suppressed. The

coefficients of the above dimension-5 operators are computed in Appendix B, with the result:

CB =
g′2e

8π2R

1

M2

B
(1)
ν

− M2

B
(1)
H

∑

F

σF

(YF

2

)2
QFEF , (2.12)

where σF = ±1 for a 6D fermion F of chirality ±, QF is the electric charge, YF is the

hypercharge normalized to be twice the electric charge for SU(2)W singlets and EF is a

function of the masses of B
(1)
H , B

(1)
ν , and of the (1,0) and (1,1) fermions given in Eq. (B.10).

CG is given by an analogous expression, but it is suppressed by the small mass difference

between the initial- and final-state (1, 0) bosons.

One might also naively expect higher-dimension operators of the form

Gµν∂µB
(1)
H ∂νG

(1)
H + Zµν∂

µB
(1)
H ∂νW

(1)3
H +

(

W+
µν∂

µB
(1)
H ∂νW

(1)−
H + H.c.

)

, (2.13)

to be generated, where W
(1)
H is the level-1 SU(2)W spinless adjoint and Wµν and Zµν are

the standard model field strengths for the W and Z bosons. However, the first of these

terms is identically zero as can be seen after integrating by parts and using the gluon field

equation. By the same method one can see that the coefficients of the last two terms are

small, being proportional to (mW R)2, and furthermore the resulting decay widths for W
(1)
H

are also phase-space suppressed.
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3. Decays of the level-1 particles

KK parity allows any (1,0) particle to decay only into a lighter (1,0) particle and one or more

standard model particles. The lightest (1,0) particle is stable. In this section we compute the

branching fractions of the (1,0) particles assuming that the generic features of the ‘one-loop’

mass spectrum, shown in Table 1, are not modified by higher-order corrections.

3.1 Color-singlet (1, 0) particles

The W
(1)
H boson (the spinless adjoint of SU(2)W ) is the next-to-lightest (1,0) particle, and

therefore can decay only into a B
(1)
H plus standard model particles. The dominant decay

mode of its electrically neutral component is the 3-body decay W
(1)3
H → B

(1)
H ll̄, where l are

leptons. The width for this decay, computed in Appendix C, is given by

Γ
(

W
(1)3
H → B

(1)
H e+e−

)

=
α2 M

W
(1)
H

128π cos2θw sin2θw

I+

(

M
W

(1)
H

,M
B

(1)
H

,M
L

(1)
+

)

, (3.1)

and is the same for any lepton pair. The dimensionless function I+ contains phase space

integrals for the decay and is defined in Eq. (C.8). Expanding this to leading order in the

mass difference M
W

(1)
H

− M
B

(1)
H

, which is accurate to about 25% for the mass spectrum in

Table 1 [see Eq. (C.18) in Appendix C], we find that the width of the W
(1)3
H decay into B

(1)
H

plus quarks has a simple expression in terms of the decay width into B
(1)
H plus leptons:

Γ
(

W
(1)3
H → B

(1)
H qq

)

≈ 1

3





M2

L
(1)
+

− M2

W
(1)
H

M2

Q
(1)
+

− M2

W
(1)
H





4

Γ
(

W
(1)
H → B

(1)
H e+e−

)

, (3.2)

where we have not summed over quark flavors. Given that W
(1)
H is closer to L

(1)
+ in mass than

to Q
(1)
+ , it follows that the decay into quarks is highly suppressed. The ensuing branching

fractions for the W
(1) 3
H → B

(1)
H transition are approximately 1/6 for each of the e+e−, µ+µ−

and τ+τ− final states, 1/2 for νν, and 0.5% for the sum of all quark-antiquark pairs.

The electrically charged spinless adjoints of SU(2)W , W
(1)±
H , decay with a branching

fraction of nearly 1/3 into each of the e±νB
(1)
H , µ±νB

(1)
H and τ±νB

(1)
H final states, while the

branching fraction into qqB
(1)
H is again negligible.

The spin-1 boson B
(1)
µ may decay only into a B

(1)
H or W

(1)
H and standard model particles.

An important tree-level decay is into right-handed leptons and a B
(1)
H , with a width:

Γ
(

B(1)
µ → B

(1)
H e+

Re−R

)

=

α2M2

E
(1)
−

24π cos4θw M
B

(1)
µ

I−
(

M
B

(1)
µ

,M
B

(1)
H

,M
E

(1)
−

)

, (3.3)

where I− is another phase space integral defined in Eq. (C.8). The width into left-handed

leptons,

Γ
(

B(1)
µ → B

(1)
H e+

Le−L

)

=

α2M2

L
(1)
+

384π cos4θw M
B

(1)
µ

I−
(

M
B

(1)
µ

,M
B

(1)
H

,M
L

(1)
+

)

, (3.4)
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is suppressed due to the smaller hypercharge and larger mass of the (1,0) fermion, which

is L
(1)
+ in this case. For the same reasons, the B

(1)
µ decay into a B

(1)
H and qq pairs has a

small decay width. B
(1)
µ decays to W

(1)
H plus fermion pairs are highly suppressed due to the

dependence on the 7th power of the small difference between initial and final (1,0) masses

[see Eqs. (C.12) and (C.18) in Appendix C].

Besides these tree-level 3-body decays, B
(1)
µ also has 2-body decays via the dimension-5

operator shown in Eq. (2.11), which is induced at one loop (see Appendix B). The decay

width is given by

Γ
(

B(1)
µ → B

(1)
H γ

)

=
α3

96π2 cos4θw

1

M
B

(1)
µ



1 −
M2

B
(1)
H

M2

B
(1)
µ





(

∑

F

σF

(YF

2

)2
QF EF

)2

, (3.5)

where the sum over F includes all quarks and leptons, σF is +1 for SU(2)W doublets and −1

for SU(2)W singlets, QF is the electric charge, YF is the hypercharge normalized to be twice

the electric charge for SU(2)W singlets, and EF is given in Eq. (B.10) and depends only on the

masses of B
(1)
H , B

(1)
ν , and of the (1,0) and (1,1) fermions. Using the values for the standard

model gauge couplings given at the end of section 2.2, i.e., α = 1/127 and sin2θw = 0.235, we

find the following branching fractions for B
(1)
µ :

Br
(

B(1)
µ → B

(1)
H γ

)

≡ bBγ ≈ 34.0% ,

Br
(

B(1)
µ → B

(1)
H e+e−

)

≡ bBe ≈ 21.3% . (3.6)

The branching fractions into e+e−B
(1)
H , µ+µ−B

(1)
H and τ+τ−B

(1)
H are equal. The fact that the

tree-level 3-body decay and the one-loop 2-body decay have comparable branching fractions

in the case of B
(1)
µ is an accidental consequence of the mass spectrum given in Table 1. The

B
(1)
µ decays into B

(1)
H plus neutrinos or quarks have small branching fractions (1.4% and 0.6%,

respectively) which may be safely ignored in what follows.

The (1,0) leptons can decay into (1,0) modes of the electroweak gauge bosons or spinless

adjoints, and a standard model lepton. The decay widths of the SU(2)W -doublet (1,0) leptons,

L
(1)
+ ≡ (N

(1)
+ , E

(1)
+ ), to neutral (1,0) particles are given at tree level by:

Γ
(

L
(1)
+ → W

(1)3
H lL

)

=
α

32 sin2θw

ML(1)



1 −
M2

W
(1)
H

M2
L(1)





2

,

Γ
(

L
(1)
+ → B(1)

µ lL

)

=
α

16 cos2θw
ML(1)



1 −
M2

B
(1)
µ

M2
L(1)





2

1 +
M2

L(1)

2M2

B
(1)
µ



 ,

Γ
(

L
(1)
+ → B

(1)
H lL

)

=
α

32 cos2θw
ML(1)



1 −
M2

B
(1)
H

M2
L(1)





2

, (3.7)
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Final-state W
(1)3
µ → ... → B

(1)
H Final-state W

(1)+
µ → ... → B

(1)
H

e, µ, γ Branching fractions % e, µ, γ Branching fractions %

X 2
3(bl1 + bl2 + bl3bBe) 30.4 X 1

3(bl1 + 2bl2 + bl3bBe) 23.1

(e+ + e−)X 4
9bl2 10.5 e+ X 1

3(bl1 + 2bl2 + bl3bBe) 23.1

(e+µ−+ e−µ+)X 4
9bl2 10.5 e+e− X 1

6(bl2 + 2bl3bBe) 4.6

e+e− X bl1
6 + 4

9bl2 + 5
6bl3bBe 15.5 e+e−e+X 1

6(bl2 + 2bl3bBe) 4.6

e+e−e+e− 1
36(bl2 + 6bl3bBe) 1.0 e+e−µ+X 1

6(bl2 + 2bl3bBe) 4.6

e+e−µ+µ− 1
18(bl2 + 6bl3bBe) 2.0 γ X 1

3bl3bBγ 1.1

γ X 2
3bl3bBγ 2.1 γ e+ X 1

3bl3bBγ 1.1

γ e+e− X 1
6bl3bBγ 0.5

Table 2: Branching fractions for the complete cascade decays of W
(1)3
µ and W

(1)+
µ . X stands for

a number of neutrinos or taus. The branching fractions involving more muons than electrons (not

shown) are equal to the analogous ones involving more electrons than muons. The branching fractions

of W
(1)−
µ are the same as for W

(1)+
µ except for flipping the electric charges of the final state leptons.

The branching fractions for ‘one-step’ decays, bl1, bl2, bl3 and bBe, bBγ , are defined in Eqs. (3.8) and

(3.6).

where lL is the corresponding standard model weak doublet lepton. The decays to charged

(1,0) particles, E
(1)
+ → W

(1)−
H νL and N

(1)
+ → W

(1)−
H e+

L , have a width twice as large as the

L
(1)
+ → W

(1)3
H lL decay width. The L

(1)
+ branching fractions are given by:

Br
[

(N
(1)
+ , E

(1)
+ ) → B

(1)
H (νL, eL)

]

≡ bl1 ≈ 20.1% .

1

2
Br
[

(N
(1)
+ , E

(1)
+ ) → W

(1)+
H (eL, νL)

]

= Br
[

(N
(1)
+ , E

(1)
+ ) → W

(1)3
H (νL, eL)

]

≡ bl2 ≈ 23.5% ,

Br
[

(N
(1)
+ , E

(1)
+ ) → B(1)

µ (νL, eL)
]

≡ bl3 ≈ 9.3% . (3.8)

As opposed to the three spinless adjoints and B
(1)
µ which at tree level have only 3-

body decays, the W
(1)
µ particles are heavier than the (1,0) leptons and therefore decay with

a branching fraction of almost 100% into one (1,0) lepton doublet and the corresponding

standard model lepton doublet. Putting together the branching fractions for various decays

of the electroweak (1,0) bosons, we find the branching fractions for the complete cascade

decays of W
(1)3
µ shown in Table 2.
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3.2 Colored (1,0) particles

At tree level, the (1,0) spinless adjoint of SU(3)c has only 3-body decays into a quark-

antiquark pair and one of the electroweak (1,0) bosons. The decay widths are derived in

Appendix C, and take the following form:

Γ
(

G
(1)
H → B

(1)
H uRuR

)

=
y2

uR
ααs

64π cos2θw
M

G
(1)
H

I+

(

M
G

(1)
H

,M
B

(1)
H

,M
U

(1)
−

)

, (3.9)

Γ
(

G
(1)
H → B(1)

µ uRuR

)

≈
y2

uR
ααs

140π cos2θw

M
G

(1)
H

M2

U
(1)
−

M2

B
(1)
µ

(

M
G

(1)
H

− M
B

(1)
µ

)7

(M2

U
(1)
−

− M2

G
(1)
H

)4
, (3.10)

for hypercharge (1,0) bosons in the final state, and

Γ
(

G
(1)
H → W

(1)3
H uLuL

)

≈ ααs

420π sin2θw

M2

G
(1)
H

(

M
G

(1)
H

− M
W

(1)
H

)7

(M2

Q
(1)
+

− M2

G
(1)
H

)4
,

Γ
(

G
(1)
H → W

(1)+
H dLuL

)

= Γ
(

G
(1)
H → W

(1)−
H uLdL

)

= 2Γ
(

G
(1)
H → W

(1)3
H uLuL

)

, (3.11)

for SU(2)W (1,0) bosons. Note that we have expanded the decay widths to leading order in

the mass difference of G
(1)
H and the electroweak (1,0) boson [see Eq. (C.18)] in the case of

GH → Bµ and GH → WH transitions, but not for GH → BH where the mass difference is

larger and the expansion does not provide a good approximation.

G
(1)
H has also a two-body decay into B

(1)
µ and a gluon, via a dimension-5 operator shown

in Eq. (2.11), which is induced at one loop. However, the width for this decay is highly

suppressed because G
(1)
H and B

(1)
µ are almost degenerate.

After summing over all quark flavors, we find that the dominant decay mode of G
(1)
H is into

B
(1)
H qq, with a total branching fraction of bg1 ≈ 96.5%. The sum over all branching fractions

of G
(1)
H into W

(1)+
H or W

(1)−
H plus a quark-antiquark pair is b′g2 ≈ 2.3%. The branching

fraction for G
(1)
H → W

(1)3
H qq is bg2 ≈ 1.2%, while the decay into B

(1)
µ is highly suppressed due

to the very small mass difference involved in that case. The branching fractions quoted here

correspond to 1/R = 500 GeV. For different values of 1/R, the branching fractions of G
(1)
H

change slightly due to the dependence of M
T

(1)
±

R on 1/R shown in Table 1. For the coupling

constants we use αs = 0.107, α = 1/127 and sin2 θw = 0.235, which are the standard model

values at 500 GeV.

The (1,0) quarks can decay into both vector and spinless modes. The largest decay width

is into a G
(1)
H and a standard model quark:

Γ
(

Q(1)→ G
(1)
H q

)

=
αs

6
MQ(1)



1 −
M2

G
(1)
H

M2
Q(1)





2

. (3.12)
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The SU(2)W -doublet (1,0) quarks can also decay into a standard-model quark, and an

SU(2)W gauge boson or spinless adjoint. Ignoring the standard-model quark mass, the decay

width for the latter is

Γ
(

Q
(1)
+ → W

(1)3
H qL

)

=
α

32 sin2θw

M
Q

(1)
+



1 −
M2

W
(1)
H

M2
Q(1)





2

, (3.13)

and is twice as large in the case of W
(1)±
H . The decays of (1,0) quarks into an SU(2)W (1,0)

vector boson and a standard model quark have a width

Γ
(

Q
(1)
+ → W (1)3

µ qL

)

=





M2

Q
(1)
+

− M2

W
(1)
µ

M2

Q
(1)
+

− M2

W
(1)
H





2

2 +

M2

Q
(1)
+

M2

W
(1)
µ



Γ
(

Q
(1)
+ → W

(1)3
H qL

)

. (3.14)

The width is twice as large for Q
(1)
+ → W

(1)±
µ qL.

All (1,0) quarks may also decay into (1,0) hypercharge bosons with widths

Γ
(

Q(1)→ B
(1)
H q

)

=
Y 2

q α

32 cos2θw
MQ(1)



1 −
M2

B
(1)
H

M2
Q(1)





2

,

Γ
(

Q(1)→ B(1)
µ q

)

=





M2
Q(1) − M2

B
(1)
µ

M2
Q(1) − M2

B
(1)
H





2

2 +
M2

Q(1)

M2

B
(1)
µ



Γ
(

Q(1)→ B
(1)
H q

)

, (3.15)

where Yq is the hypercharge of the quark q, normalized to be 1/3 for SU(2)W doublets. The

branching fractions of the (1,0) quarks of the first and second generations are shown in Table

3.

The B
(1)
− quark has the same branching fractions as D

(1)
− , while those of the Q

(1)3
+ =

(T
(1)
+ , B

(1)
+ ) quarks are more sensitive to 1/R, as shown in Figure 2, because of the large top

quark mass. Finally, the KK mode of the SU(2)W -singlet top quark, T
(1)
− , has branching

fractions highly sensitive to the mass of (1,0) Higgs particles, with the decay into bH(1)+

dominating over t G
(1)
H if H(1)+ is light. Because of this fact, and also because of their small

production cross section, third generation fermions do not result in many multi-lepton events.

Hence we will not give an expression for their branching fractions here.

The (1,0) vector gluon decays into a standard model quark and a (1,0) quark. The width

in the case of SU(2)W -singlet down-type quarks is given by

Γ



G(1)
µ →

∑

i=1,2,3

D
(1)i
−R

di
R



 =
αs

2
M

G
(1)
µ



1 −
M2

D
(1)
−

M2

G
(1)
µ





2

1 +

M2

D
(1)
−

2M2

G
(1)
µ



 . (3.16)

The widths into all other (1,0) quarks except for the top have similar forms. For 1/R ∼< 1.3

TeV the decays of the (1,0) vector gluon into tLT
(1)
+L

or tRT
(1)
−R

have a highly suppressed phase
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V (1) Br
(

U
(1)
+ → qLV (1)

)

V (1) Br
(

U
(1)
− → uRV (1)

)

Br
(

D
(1)
− → dRV (1)

)

G
(1)
H bq3 ≈ 63.2% G

(1)
H bu3 ≈ 82.1% bd3 ≈ 94.8%

W
(1)3
µ ; W

(1)+
µ bq2 ≈ 6.4% ; 2bq2 B

(1)
µ bu2 ≈ 11.5% bd2 ≈ 3.3%

W
(1)3
H ; W

(1)+
H bq1 ≈ 5.6% ; 2bq1 B

(1)
H bu1 ≈ 6.4% bd1 ≈ 1.9%

B
(1)
µ bq0 ≈ 0.55%

Table 3: Branching fractions of first and second generation (1,0) quarks, in percentage. D
(1)
+ have

the same branching fractions as U
(1)
+ except for a flip of the electric charge of the (1,0) bosons. The

U
(1)
+ decays into a B

(1)
H and a quark is not shown because it is too small to be relevant.

Figure 2: Branching fractions for the SU(2)W -doublet (1,0) quarks of the third generation, assuming

that the (1,0) Higgs particles have a mass MH(1) = 1.05/R.

space, and the branching fractions of G
(1)
µ into a quark plus Q

(1)i
+L

, U
(1)i
−R

, or D
(1)i
−R

, summed

over the index i which labels the three generations, are given by 36.7%, 24.6% and 38.7%,

respectively.

For the purpose of analyzing the capability of the LHC to test this model, we need to

compute the branching fractions of the complete cascade decays of the (1,0) quarks and gluons

into the LKP and a number of charged leptons or photons. It is useful to compute first the

sums over branching fractions of the cascade decays that do not involve any e±, µ±, or γ for

G
(1)
H ,

bgX = bg1 +
2

3
bg2 +

b′g2

3
, (3.17)
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Final-state e, µ, γ G
(1)
H → ... → B

(1)
H U

(1)
− → ... → B

(1)
H D

(1)
− → ... → B

(1)
H

X bgX ≈ 98.0% buX ≈ 89.4% bdX ≈ 95.5%

e+ (µ+)X 1
6b′g2 ≈ 0.38% 1

6bu3b
′
g2 ≈ 0.31% 1

6bd3b
′
g2 ≈ 0.36%

e− (µ−)X 1
6b′g2 ≈ 0.38% 1

6bu3b
′
g2 ≈ 0.31% 1

6bd3b
′
g2 ≈ 0.36%

e+e− (µ+µ−)X 1
6bg2 ≈ 0.21% bu2bBe + bu3

6 bg2 ≈ 2.6% bd2bBe + bd3
6 bg2 ≈ 0.90%

γ X ≈ 0 bu2bBγ ≈ 3.9% bd2bBγ ≈ 1.1%

Table 4: Branching fractions for the complete cascade decays of G
(1)
H , U

(1)
− and D

(1)
− , with 0,1 or 2

charged leptons in the final state. X stands for a number of standard model fermions other than e±

and µ±. The branching fractions for U
(1)

− and D
(1)

− are the same as for U
(1)
− and D

(1)
− .

and for U
(1)
− , D

(1)
− , Q

(1)
+ , respectively:

buX = bu1 + bu2 bBe + bu3 bgX ,

bdX = bd1 + bd2 bBe + bd3 bgX ,

bqX = bBebq0 +
4

3
bq1 +

2

3
(2bl1 + 3bl2 + 2bl3bBe) bq2 + bq3 bgX . (3.18)

The right-hand sides of the above equations are sums over separate cascade decays, whose

branching fractions are written as products of ‘one-step’ decays. For example, in the case

of bqX the first term comes from the Q
(1)
+ → W

(1)
H → B

(1)
H cascade, the second term comes

from the sum over Q
(1)
+ → W

(1)
µ → · · · → B

(1)
H cascades, and the last term comes from the

Q
(1)
+ → G

(1)
H → B

(1)
H cascade.

The Q
(1)
− and G

(1)
H cascade decays lead to at most two charged leptons, with small branch-

ing fractions, as shown in Table 4. By contrast, Q
(1)
+ have larger branching fractions for decays

involving charged leptons, and include up to four charged leptons (see Table 5). However,

the cascade decay with the largest branching fraction to a photon is that of U
(1)
− .
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Final-state e, µ, γ U
(1)
+ → ... → B

(1)
H

X bqX ≈ 74.5%

e+ (µ+)X 2
3bq1 + 2

9 (3bl1 + 7bl2 + 3bl3bBe) bq2 + 1
6b′g2bq3 ≈ 7.3%

e− (µ−)X 2
9bl2bq2 + 1

6b′g2bq3 ≈ 0.58%

e+e− (µ+µ−)X bBebq0 +
bq1
6 + 1

18(3bl1 + 14bl2 + 27bl3bBe)bq2 +
bg2
6 bq3 ≈ 2.6%

e+µ− (e−µ+)X 2
9bl2bq2 ≈ 0.33%

e+e+e− (µ+µ+µ−)X 1
3(bl2 + 2bl3bBe)bq2 ≈ 0.58%

µ+e+e− (e+µ+µ−)X 1
3(bl2 + 2bl3bBe)bq2 ≈ 0.58%

e+e−e+e− (µ+µ−µ+µ−)X 1
36(bl2 + 6bl3bBe)bq2 ≈ 0.063%

e+e−µ+µ− X 1
18(bl2 + 6bl3bBe)bq2 ≈ 0.13%

γ X bBγbq0 + 4
3bl3bBγbq2 ≈ 0.38%

γ e+ (γµ+)X 2
3bl3bBγbq2 ≈ 0.13%

γ e+e− (γµ+µ−)X 1
6bl3bBγbq2 ≈ 0.033%

Table 5: Branching fractions for the complete cascade decays of U
(1)
+ with up to four charged leptons

or photons in the final state. X stands for a number of standard model fermions other than e± and

µ±. D
(1)

+ has the same branching fractions as U
(1)
+ , while the branching fractions of D

(1)
+ and U

(1)

+

are given by flipping the lepton charges in the first column. The (1,0) top-quark doublet has braching

fractions which are highly dependent on 1/R, and are not shown here.

4. Signatures of (1,0) particles at hadron colliders

In this section we discuss the prospects for discovery of (1,0) particles at the LHC and the

Tevatron. As shown in the previous section, a large number of leptons arises in the decays

of W
(1)
µ and other (1,0) bosons, while photons arise in the decay of the B

(1)
µ vector boson.

We focus on computing the production cross sections of colored particles and the number

of events with leptons and photons resulting from their decays. We will also include direct

production of W
(1)
µ in our analysis although this turns out to have a rather small effect.
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4.1 Pair production of level-1 particles

We discuss the production of (1,0) particles in order of importance for the lepton + photon

signals under consideration. This is more complicated than level-1 production in the case of

one universal extra dimension [17] because of the G
(1)
H spinless adjoint, which is not present

in the 5D theory, and appears in the final state as well as in s- and t- channel exchanges.

We begin with the SU(2)W -doublet quark Q
(1)
+ , because a large fraction of its cascade

decays gives rise to charged leptons (see Section 3). In addition, since it is lighter than the

(1,0) vector gluon, and because of its high multiplicity, we expect Q
(1)
+ production to be the

dominant source of multi-lepton signals. We concentrate here on production mechanisms at

the LHC, while in section 4.3 we adapt this discussion to the case of pp̄ collisions at the

Tevatron.

Given that there are more quarks than anti-quarks involved in proton-proton collisions,

we first discuss quark-initiated pair production, qq → Q
(1)
± Q

(1)
± , which is mediated by G

(1)
µ

and G
(1)
H exchange in the t channel, as shown in Fig. 3. Two (1,0) quarks of different flavors

(Q
(1)
± Q′(1)

± ), and an SU(2)W doublet-singlet pair (Q
(1)
+ Q′(1)

− ) are produced in a similar way.

For low 1/R, the quark anti-quark and gluon initiated production mechanisms are also

important. Production from a quark anti-quark pair, qq̄′ → Q
(1)
± Q̄′(1)

± and qq̄′ → Q
(1)
± Q̄′(1)

∓ ,

is similar to the process shown in Fig. 3 with a fermion line replaced by an anti-fermion line.

When quarks in the initial state have a different flavor than the (1,0) quarks in the final

state, q′q̄′ → Q
(1)
± Q̄

(1)
± , a single tree-level diagram with a gluon exchange in the s channel

contributes, as shown in Fig. 4. The processes qq̄ → Q
(1)
± Q̄

(1)
± (for which the initial and final

states have same flavors) get contributions from the two diagrams in Fig. 3 with one of the

fermion lines replaced by an anti-fermion line, and also from the diagram of Fig. 4 with q′

replaced by q.

Q
(1)
± Q̄

(1)
± can also be produced from two gluons in the initial state, as shown in Fig. 5.

This production channel becomes increasingly important for smaller (1,0) quark mass (smaller

1/R) due to the larger gluon flux in the parton distribution.

Since the SU(3)c (1,0) bosons, G
(1)
µ and G

(1)
H , decay to fewer leptons than Q

(1)
+ , we will

next consider their associated production with Q
(1)
+ . The process qg → Q

(1)
± G

(1)
H is shown in

Fig. 6. Diagrams with a (1,0) vector gluon in the final state can be obtained by replacing G
(1)
H

+

Q
(1)
±

Q
(1)
±

Q
(1)
±

Q
(1)
±

q

q

q

q

G
(1)
µ G

(1)
H

Figure 3: Diagrams for Q
(1)
± Q

(1)
± production from quark-quark (qq) initial state.
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Q̄
(1)
±

Q
(1)
±

q′

q̄′

g

Figure 4: Q
(1)
± Q

(1)

± production from q′q̄′ initial state.

+ +

g

g

g

g

g

g
g

Q̄
(1)
±

Q
(1)
±

Q̄
(1)
±

Q
(1)
±

Q̄
(1)
±

Q
(1)
±

Q
(1)
± Q

(1)
±

Figure 5: Diagrams for Q
(1)
± Q̄

(1)
± production from gluon-gluon (gg) initial state.

by G
(1)
µ . Similar diagrams, but with G

(1)
H replaced by W

(1)
µ and an appropriate flip between

the up-type and down-type quarks, contribute to qg → Q
(1)
± W

(1)
µ associated production.

G
(1)
H pair production is a rather meager source of leptons or photons, but for the sake of

completeness we include here its diagrams: quark initiated production qq̄ → G
(1)
H G

(1)
H , and

gluon initiated production gg → G
(1)
H G

(1)
H are shown in Figs. 7 and 8, respectively. G

(1)
µ pair

production proceeds through the same diagrams with all G
(1)
H lines replaced by G

(1)
µ ones.

G
(1)
µ G

(1)
H associated production, qq̄ → G

(1)
H G

(1)
µ , proceeds through four diagrams with

Q
(1)
+ and Q

(1)
− in the t and u channels, similar to the second diagram in Fig. 7. There is no

contribution from the s channel because the coupling G
(1)
H gµG

(1)
µ does not exist at tree level

due to gauge invariance.

Finally we consider associated production of G
(1)
µ or G

(1)
H with an SU(2)W vector boson,

W
(1)
µ , as shown in Fig. 9 (with G

(1)
H in the final state replaced by G

(1)
µ for qq̄′ → G

(1)
µ W

(1)
µ ).

+ +

g

q

g

q

g

q

q

G
(1)
H

Q
(1)
±

Q
(1)
±

G
(1)
H

G
(1)
H

Q
(1)
±

Q
(1)
± G

(1)
H

Figure 6: Diagrams for G
(1)
H Q

(1)
± production from quark-gluon initial state.
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+

q̄

q

q̄

q
g

G
(1)
H

G
(1)
H

G
(1)
H

G
(1)
H

Q
(1)
±

Figure 7: Diagrams for G
(1)
H G

(1)
H production from qq̄ ( u-channel diagram is not shown).

+ +

g

g

g

g

g

g
g

G
(1)
H

G
(1)
H

G
(1)
H

G
(1)
H

G
(1)
H

G
(1)
H

G
(1)
H

Figure 8: Diagrams for G
(1)
H G

(1)
H production from gg (a u-channel diagram is not shown).

For W
(1)3
µ in the final state, the initial state and the (1,0) quarks are all of the same type.

Associated production with hypercharge bosons, B
(1)
µ B

(1)
H , as well as with the SU(2)W

spinless adjoints W
(1)
H are very small and will be neglected; we will also ignore production of

(1,0) Higgs particles since their phenomenology is highly model-dependent.

+

q̄′

q

q̄′

q

W
(1)+
µ

G
(1)
H

G
(1)
H

W
(1)+
µ

Q
(1)
+ Q′(1)

+

Figure 9: Diagrams for W
(1)+
µ G

(1)
H production from qq̄′.

Given that there are many diagrams that need to be taken into account, we have imple-

mented the 6DSM detailed in section 2 in CalcHEP [18, 19], a tree-level Feynman diagram

calculator (for a description of our CalcHEP files, see [20]). Consequently it is rather straight-

forward to compute production cross sections for (1,0) particles at various colliders. As a

cross-check we have compared the CalcHEP output for all 2- and 3-body decay widths with

the corresponding analytic expressions in Section 3. We also checked cross sections for selected

production channels using MadGraph/MadEvent [21, 22].

The cross sections at the LHC (
√

s = 14 TeV) are graphed as a function of 1/R in Fig. 10,

and have been summed over various channels. We assume five partonic quark flavors in the
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Figure 10: Tree-level production cross sections of (1,0) particles at the LHC: (a) quark pairs, and (b)

final states involving bosons. The cross sections have been summed over the first two generations of

KK quarks and antiquarks. The weak-doublet Q
(1)
+ includes both up- and down-type (1,0) quarks. The

cross section for U
(1)
+ D

(1)
+ production (not shown) turns out to be nearly equal to that for U

(1)
+ U

(1)
+ .

Cross sections for the weak-singlet quarks (6D chirality −) are almost the same as those for weak-

doublet quarks (6D chirality +) and are not plotted.

proton along with the gluon, and ignore electroweak production of colored particles. We use

the CTEQ6L parton distributions [23], and choose the scale of the strong coupling constant

αs to be equal to the parton-level center of mass energy.

Q
(1)
+ Q

(1)
+ production, which is responsible for most of the multi-lepton events (as shown

later in Section 4.2), is dominated by (1,0) quarks of the first 2 generations (88% at 1/R = 500

GeV, increasing to 98% at 1/R = 1 TeV). The gluon-gluon initial state contributes only ∼10%

(3%) of the total Q
(1)
+ Q

(1)
+ cross section at 1/R = 500 GeV (1 TeV), since firstly the gluon flux

in the proton at this mass scale is small, and secondly, there is a large number of subprocesses

with qq or qq̄ initial states. G
(1)
H production is different in that the dominant contribution to

this process comes from the gluon initial state, with valence quarks making up the remainder.

The production cross sections of the SU(2)W doublet and singlet (1,0) quarks, Q
(1)
+

or Q
(1)
− , are almost equal, since they are produced in exactly the same way (see Figs. 3-

6). The slightly higher mass of Q
(1)
+ lowers its production cross section, but this is a small

effect. As expected from the structure of the parton distribution function, the G
(1)
µ associated

production cross sections drop off faster than others.

Q
(1)
+ U

(1)
− pair production, the main source of events containing both photons and leptons,

proceeds through G
(1)
µ and G

(1)
H exchange in the t-channel, as in Fig. 3 with one of the Q

(1)
+

quarks replaced by U
(1)
− . Due to the partonic structure, the production with first-generation

quarks in the initial state are dominant, accounting for ∼ 50% of all Q
(1)
+ U

(1)
− pairs produced

for 1/R = 500 GeV.
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As mentioned earlier, W
(1)
µ associated production, although small compared to that for

colored (1,0) particles, is not necessarily negligible because of its large branching fraction into

leptons. We have included the cross section for the channel with the largest production rate,

W
(1)+
µ Q

(1)
+ , in Fig. 10. The dominant contribution to this process is from production with

first generation (1,0) quarks. W
(1)−
µ associated production is even smaller, by an extra factor

of ∼3, due to the partonic structure of the proton.

4.2 Events with leptons and photons at the LHC

Having determined the production rates of (1,0) particles, we now turn to a discussion of their

experimental signatures at the LHC. First we will consider the production of (1,0) particles

which give nℓ+ mγ + /ET with n ≥ nmin and 0 ≤ m ≤ 2, where we do not count leptons from

the decay of the standard model particles.

We calculate the inclusive cross sections for the channels nℓ + mγ + /ET with n ≥ nmin

and 0 ≤ m ≤ 2 in the following way. There are 11 (1,0) particles with different branching

fractions to multiple leptons as discussed in Section 3. We label these particles by A
(1)
i , where

1 ≤ i ≤ 11 is the particle type:

A
(1)
i =

(

W (1)
µ , G(1)

µ , G
(1)
H , T

(1)
+ , B

(1)
+ , T

(1)
− , U

(1)
− ,D

(1)
− , Q

(1)
+

)

. (4.1)

Their branching fractions, Br(i, a, a′), where a is the number of leptons (0 ≤ a ≤ 4) and a′

is the number of photons (0 ≤ a′ ≤ 1), are given in Section 3. Q
(1)
+ and U

(1)
− include only

the first two generations of weak doublets and up-type singlets. One should keep in mind

that the 3rd generation KK quarks and KK quarks of the first two generations have different

branching fractions to leptons so they need to be tackled separately. For simplicity we use

the same symbol here for quarks and antiquarks. The cross section for nℓ + mγ + /ET events

with n ≥ nmin and 0 ≤ m ≤ 2 is

σ(pp → nℓ + mγ + /ET , n ≥ nmin) =
11
∑

i=1

11
∑

j≥i

σ(pp → A
(1)
i A

(1)
j )Bij , (4.2)

where Bij is a sum over products of branching fractions of the particles A
(1)
i and A

(1)
j

Bij =
4
∑

a,b=0
a+b≥nmin

1
∑

a′,b′=0
a′+b′=m

Br(i, a, a′)Br(j, b, b′) , (4.3)

Note that the total numbers of photons (m) and leptons (n) from the decay of a pair of (1,0)

particles are constrained by 0 ≤ n + 2m ≤ 8. It is not possible to obtain 8ℓ + 2γ + /ET

for instance, since the hypercharge gauge boson B
(1)
µ can decay into either a photon or a

fermion pair, together with B
(1)
H , so a photon is only produced at the expense of two leptons.

Most (1,0) particles have branching fractions that are independent of 1/R. However, those

for third generation quarks have variations due to threshold effects (see Fig. 2). We use
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Figure 11: Sum over cross sections for (1,0) particle pair production at the LHC times the branching

fractions of the cascade decays that give rise to n ≥ 3, 4, 5 or 6 charged leptons (ℓ = e± or µ±), as a

function of the compactification scale.

values at large 1/R, which slightly underestimates the total number of events as branching

fractions are larger at small 1/R. Since the contribution from the third generation is small,

our approximation gives rise to negligible error.

Cross sections for multi-lepton events at the LHC are shown in Fig. 11 as a function

of 1/R. Out of the total number of events with 5 leptons or more at 1/R = 500 GeV, the

majority arise from first- and second- generation weak doublet quarks, either in pairs or in

association with other particles; W
(1)
µ pair production is responsible for around 10%, as is

production including SU(3)c bosons, G
(1)
µ,H . As parton distribution functions vary with the

size of the extra dimensions, so will the individual contributions, although the sensitivity to

the mass scale 1/R is small. The results shown in Fig. 11 include tree-level processes only.

We estimate that next-to-leading order effects will increase the cross sections by ∼30-50%,

especially due to initial state radiation. A complete analysis of this effect is warranted, but

is beyond the scope of this paper.

Also interesting are combined photon and lepton events which result from 1-loop decays

of the (1) hypercharge gauge boson B
(1)
µ produced in the decay chain of U

(1)
− quarks (see

Fig. 12(a)). Down-type quarks have smaller hypercharge and so couple less strongly; while

quark doublets couple more strongly to weak bosons, resulting in a negligible branching
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Figure 12: Cross sections for (a) mγ +nℓ + /ET events with n ≥ nmin for m = 1, 2 and 1 ≤ nmin ≤ 4

and (b) Lepton + photon events with two or more same-sign leptons, at the LHC as a function of

1/R.

fraction into B
(1)
µ . In Fig. 13 we show typical diagrams for ℓ+ℓ+ℓ+ℓ−ℓ− and γℓ+ℓ− signatures.

The rate for events with unusual combinations of final states: two same-sign leptons and

a photon, γℓ+ℓ+ (γℓ−ℓ−) for instance, or three same-sign and one opposite sign lepton,

ℓ+ℓ+ℓ+ℓ− (ℓ−ℓ−ℓ−ℓ+), are plotted in Fig. 12(b). The latter process consists of around 10%

of the total rate for 4 lepton events, and the largest single contribution to it is the decay

of U
(1)
+ (D

(1)
+ ) pairs. It arises only rarely in the standard model from W+W+Z (W−W−Z)

production.

We expect that the small standard model backgrounds for these processes can be elim-

inated by using a hard /ET cut in conjunction with a jet pT cut since the jets originating

from the decay of (1,0) colored particles should have a transverse momentum of the order

of their mass differences (∼ 100 GeV). One might also naively worry about triggering issues

due to the softness of leptons, since the cascade decays giving rise to them occur between

particles that are relatively degenerate in mass. A preliminary analysis on a single leg of the

decay chain keeping exact spin correlations suggests that more than 90 % of lepton pairs have

g

g

g

Q
(1)
+

Q̄
(1)
+

q′

q̄

W (1)+
µ

W
(1)3
H

B
(1)
H
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ℓ

B
(1)
H

ℓ̄

ℓ
ℓ̄
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(1)
+ W

(1)3
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q

q

G
(1)
H

Q
(1)
+

Q
(1)
−

q
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B
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B
(1)
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γ

ℓ

N
(1)
+ W
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Figure 13: Representative processes that lead to 5ℓ + /ET and γℓ+ℓ− + /ET events. Several other

production mechanisms as well as cascade decays contribute to these and related signals.
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Figure 14: (a) Production cross sections at the Tevatron and (b) Cross sections for multilepton +

photon events, as a function of 1/R.

enough pT to evade a 15 GeV cut, and that the leptons are far enough away in ∆R to be

visible as individual tracks. Hence we do not anticipate any triggering problems, although a

detailed analysis of these issues using a detector simulator might be beneficial.

4.3 Cross sections at the Tevatron

At the Tevatron, the production from a qq̄ initial state, shown in Figs. 4, 7 and 9, dominates.

We summarize our results for (1,0) production cross sections, as well as multi-lepton and

lepton plus photon signatures in Fig. 14. The lower center-of-mass energy of this collider

slightly increases W
(1)
µ production cross sections as compared with the LHC. This process

now contributes 16% of the total number of events with 4 or more leptons for 1/R = 300

GeV.

We can use data gathered from Tevatron Run II to place rough constraints on the radius

of the extra dimensions. One potential channel that has been searched for in the context of

the minimal supersymmetric standard model is the trilepton signal [24, 25]. We apply the

results of this analysis, which found no excess over standard model background, directly to

our model. If we assume an efficiency of ∼ 5% [24, 25], we see that 1/R must be larger than

∼ 270 GeV, otherwise we might have expected to observe at least 3 events. Low statistics

for this final state, both in expected and observed events, make the limit rather less reliable

than desired.

A more precise, though less stringent, constraint can be obtained by using Run II lepton

+ photon data [26], which contains larger numbers of expected and observed events. The

standard model prediction for the ℓγX channel for instance, is 150.6±13 with an observation

of 163 events. Assuming that universal extra dimensions are responsible for the small excesses

in this and the ℓ+ℓ−γX channels allows us to obtain a limit on 1/R of around 240 GeV at

95% C.L.
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5. Conclusions

Despite the successful predictions of the 6DSM, the hadron collider phenomenology of (1,0)

KK modes has not been previously studied due to the large number of mechanisms that

contribute to production cross sections. Our inclusion in CalcHEP of the interactions between

(1,0) particles and standard model ones has allowed us to compute the cross sections for (1,0)

pair production at the LHC and the Tevatron. The large cross sections (of almost 104 fb

at the LHC, for masses around 500 GeV) shows that cascade decays with small branching

fractions may be observed, leading to a variety of discovery channels. These are particularly

interesting because of the presence in the 4D effective theory of a spinless adjoint particle for

each standard model gauge group. One-loop corrections to the level-1 masses tend to make

these spinless adjoints lighter than matter fields [14] (the same result [27] applies to other

models [28]), forcing them to undergo tree-level 3-body decays and emitting two standard

model fermions each time. This results in significant numbers of events with five or more

leptons.

Multi-lepton events are not unique to the 6DSM, although the rates at which they occur

in other theories are typically smaller. In its 5D counterpart for example, it is necessary to

produce level-2 KK particles to give rise to long enough cascades; the rate for such processes is

suppressed because the particles produced are heavier (m ∼ 2/R) [4]. Another theory leading

to multi-lepton signatures involves a warped extra dimension with custodial symmetry [29],

but leptons in that case come from decays of W and Z, whose branching fractions are small.

In supersymmetric models, cascade decays of squarks such as q̃′L → χ̃±
2 q → W±χ̃0

2q(χ̃
±
1 Zq)

can also give multi-lepton signatures at the cost of small production cross sections due to

spin-statistics as well as a small branching fraction for q̃′L → χ̃±
2 q.

Nevertheless, it should be rather straightforward to differentiate among these models if

a sufficiently large number of multi-lepton events will be observed at the LHC. The 6DSM

has specific preditions for many observables. In this paper we analyzed the rates for events

with 3, 4, 5 and 6 leptons, as well as the relative rates for events with three leptons of one

charge and one lepton of opposite charge. Other observables, such as the relative rates for

events with different numbers of electrons and muons, may be analyzed using the branching

fractions for complete cascade decays (see the tables in Section 3). Another peculiarity of the

6DSM cascade decays is that they lead with reasonably large branching fractions to events

with photons. This is a consequence of the 2-body decay at one loop of the hypercharge (1,0)

vector boson, which competes successfully with its tree-level 3-body decays. Events with

leptons, photons and missing energy are also predicted in certain supersymmetric extensions

of the standard model, but again, there are several different channels, and we expect that if

such events will be seen in large numbers, it will be possible to differentiate between models.

One may wonder how robust our predictions are against variations in the mass spectrum,

which may get contributions from operators localized at the fixed points of the chiral square,

as well as from higher-order QCD effects. In the case of a single universal extra dimension,

deviations from the one-loop corrected mass spectrum lead to a variety of phenomenological
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implications [30]. Within the 6DSM, we expect that the rates for multi-lepton events remain

relatively large when the (1,0) mass spectrum is perturbed. This is due to the large number

of particles involved in a typical decay chain, with a standard model quark or lepton being

emitted at each stage. The total rates computed here are sums over many such cascade decays

of several (1,0) particles. However, the events with photons depend entirely on the branching

fractions of a single particle, the hypercharge vector boson, and thus are less generic for

different mass spectra.

A more general approach would be to lift the constraints on the mass spectrum. If excess

events with leptons, missing energy and possibly photons will be observed in certain channels

at the LHC, then the (1,0) masses would be determined by comparing a large set of observed

rates with the 6DSM predictions. One should also keep in mind that the predictions of the

6DSM are not limited to collider signals. For example, an interesting feature is that the LKP

has spin 0, with various implications for dark matter [31].

Acknowledgments: We would like to thank Hsin-Chia Cheng, Konstantin Matchev

and Eduardo Ponton for helpful conversations. Fermilab is operated by Fermi Research

Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department

of Energy.

Appendix A: Feynman rules for (1,0) modes

In this section we show Feynman rules that are relevant for QCD production of (1,0) particles

at hadron colliders. Corresponding vertices involving electroweak gauge bosons can be easily

inferred from those given below. The vector-like nature of KK fermions allows for the usual

QCD coupling to standard model gluons seen in the GµQ(1)Q(1) vertex below.

Ga
µ

Q
(1)
±

Q
(1)
±

= −igsγ
µT a

G
(1)a
µ

Q
(1)
±

Q
(0,0)
±

= −igsγ
µPL

R
T a

The interaction of a level-1 quark and a level-1 gluon is chiral and so its vertex contains

projection operators, although the chirality of the incoming fermion is conserved.

However, the interaction of a spinless adjoint G
(1,0)a
H with fermions changes the chirality

of the incoming fermion since G
(1,0)a
H is a scalar. Note that the Feynman rules for standard-

model gluons are fixed by gauge invariance. The 3 and 4-point interactions involving only

(1,0) vector bosons and zero-mode gluons are identical to those in the standard model.
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G
(1)a
H

Q
(1)
±

Q(0,0)±

= −gsPL
R
T a

�
�	

@
@I

p

q

Ga
µ

G
(1)b
H

G
(1)c
H

= gsf
abc
(

p − q
)µ

Gb
µ

Gd
ν

G
(1)c
H

G
(1)e
H

= −ig2
sg

µν(fabcfade + fabefadc)

Gb
ν

G
(1)a
µ

G
(1)c
ρ

= gsf
abc
[

(k − p)λgµν + (p − q)µgνρ + (q − k)νgµρ

]

�
�	

@
@I-

k

q

p

Ga
µ

Gb
ν

G
(1)c
ρ

G
(1)d
σ

= −ig2
s

[

fabef cde(gµρgνσ − gµσgνρ) + facef bde(gµνgρσ − gµσgνρ)

+fadef bce(gµνgρσ − gµρgνσ)
]

Appendix B: One-loop 2-body decays of (1,0) bosons

We compute here the amplitude for the process B
(1)
ν → B

(1)
H γ, which proceeds through one-

loop diagrams with KK fermions running in the loop. The couplings of the B
(1)
ν and B

(1)
H

bosons to the KK modes of a 6D chiral fermion F+ are given by

L ⊃ 1

4
g′YF+F

(j,k)
+

[

B(1)
ν γν

(

PL dj,k;j′,k′

00 − PR dj,k;j′,k′

10 r∗jkrj′,k′

)

− iB
(1)
H

(

PR dj,k;j′,k′

01 rj′,k′ − PL dj′,k′;j,k
03 r∗jk

)]

F j′,k′

+ . (B.1)
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-
p′
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Figure 15: Dimension-5 operator induced by fermion loops.

Here we have defined

dj,k;j′,k′

nn′ = (−1)nδk′,k

(

δj′,j−1 + (−1)n
′

δj′,j+1

)

+ (−1)nδj′,j

(

δk′,k+1 + (−1)n
′

δk′,k−1

)

+ in
′−nδj,1δk′,0δj′,k + in+2n′

δj′,1δk,0δk′,j , (B.2)

where rj,k are complex phases,

rj,k =
j + ik
√

j2 + k2
(B.3)

and YF is the hypercharge of the fermion, normalized to −1 for lepton doublets. In the case

of fermions with 6D chirality −, which contain right-handed zero modes, the same formulas

apply with the PL and PR chirality projection operators interchanged.

Dimension-5 operators coupling a (1,0) vector boson to a (1,0) spinless adjoint and a

standard-model gauge boson are induced at one loop by the diagram in Figure 15, with

fermion KK modes running in the loop. The contribution of a fermion F+ to the amplitude

for B
(1)
ν → B

(1)
H γµ is given by

M
(

B(1)
ν → B

(1)
H γµ

)

F+

= −1

4

(

g′
YF+

2

)2

eQF+ ε∗µ(p − p′) εν(p) I
µν(j,k;j′,k′)
F+

, (B.4)

where

I
µν(j,k;j′,k′)
F+

=

∫

d4l

(2π)4
Tr

mj,k;j′,k′

F [l/γµ + γµ(l/ + p/ − p′/)] (l/ + p/) − mj′,k′;j,k
F l/γµ(l/ + p/ − p′/)

(

l2 − M2
F (j,k)

) [

(l + p − p′)2 − M2
F (j,k)

] [

(l + p)2 − M2
F (j′,k′)

] γνγ5

(B.5)

and

mj,k;j′,k′

F = MF (j,k) Re
[

rjk

(

dj,k;j′,k′

00 dj′,k′;j,k
01 − dj′,k′;j,k

10 dj,k;j′,k′

01

)]

. (B.6)

After integrating over the loop momentum l, and summing over fermions, we find the ampli-

tude

M
(

B(1)
ν → B

(1)
H γµ

)

= −g′2e

8π2
ǫµναβ

ε∗µ(p − p′)εν(p)pαp′β
M2

B
(1)
ν

− M2

B
(1)
H

∑

F

σF

(

YF

2

)2

QF EF , (B.7)
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Figure 16: The diagrams for 3-body decay of (1,0) particles. A2 and A1 are heavy bosons of spin 0

or 1, F is a heavier fermion, and f is a much lighter fermion.

where σF = ±1 when F has 6D chirality ±, and

EF =
∑

j,k;j′,k′

mj,k;j′,k′

F Jj,k;j′,k′

F , (B.8)

with JF given by an integral over a Feynman parameter:

Jj,k;j′,k′

F =

∫ 1

0

dx

x
ln









1 +

x(1 − x)

(

M2

B
(1)
ν

− M2

B
(1)
H

)

(1 − x)M2
F (j,k) + xM2

F (j′,k′)
− x(1 − x)M2

B
(1)
ν









. (B.9)

The mj,k;j′,k′
quantities vanish unless the set of KK numbers (j, k; j′, k′) is given by

(1,0;1,1), (1,1;1,0) or (1,0; 0,0). This is a consequence of the vectorlike nature of the fermion

higher KK modes. Therefore,

EF = MF (1,0)

(

2J1,0;0,0
F + J1,0;1,1

F

)

+
√

2MF (1,1)J
1,1;1,0
F . (B.10)

Note that EF depends only on the (1,0) masses and on the masses of the (0,0) and (1,1)

fermions. The mass corrections for (1,1) fermions,
{

Q3
+, T−, Q1,2

+ , U1,2
− ,D1,2,3

− , L+ and E−

}

,

are given by
√

2/R multiplied by the coefficients {1.33, 1.31, 1.31, 1.27, 1.26, 1.05, 1.02} respec-

tively [5], ignoring electroweak symmetry breaking effects. Note also that in the limit that

all the fermions at each KK level are degenerate, EF becomes independent of F and so can

be taken out of the sum in Eq. (B.7), which then vanishes identically by anomaly cancella-

tion. This completes the computation of the amplitude for B
(1)
ν → B

(1)
H γ, which determines

the coefficient of the dimension-5 operator shown in Eq. (2.11), and the decay width of B
(1)
ν

shown in Eq. (3.5).

Appendix C: Tree-level 3-body decays of (1,0) bosons

In this Appendix we compute the width for 3-body decays of (1,0) bosons. Let us consider a

generic 3-body decay of a boson A2 of mass M2 into a boson A1 of mass M1 and a fermion-

antifermion pair f f̄ , via an off-shell fermion F , of mass MF > M2 > M1. There are two
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tree-level diagrams contributing to the process A2 → (F ∗f) → A1f f̄ , as shown in Fig. 16.

For simplicity, we assume that the final-state fermions are massless. The decay width is given

by

Γ(A2 → A1f f̄) =
1

64π3M2

∫ µ◦

0
dEf

∫ Emax
f̄

µ◦−Ef

dEf̄ |M|2 , (C.1)

where M is the matrix element, Ef and Ef̄ are the energies of the final-state fermions in the

rest frame of A2, and we defined

µ◦ ≡
M2

2 − M2
1

2M2
. (C.2)

For a fixed Ef , the maximum value of Ef̄ is

Emax
f̄

=
µ◦ − Ef

1 − 2Ef/M2
. (C.3)

Let us first consider the case where both A1 and A2 have spin 0 (we label them by A1H

and A2H in that case) and have pseudo-scalars couplings to the fermions:

(g1A1H + g2A2H) iFLfR + H.c. , (C.4)

where g1,2 are real dimensionless couplings. The matrix element squared, summed over the

spins of f and f̄ , is given by

|M|2
(

A2H → fRf̄RA1H

)

= 2 (g1g2)
2
[

2(Pf · P1)(Pf · P1) − M2
2 (Pf · Pf̄ )

]

∆2 , (C.5)

where P1, Pf and Pf̄ are the 4-momenta of A1H , f and f̄ , respectively. The quantity

∆ =
1

(P1 + Pf )2 − M2
F

− 1

(P1 + Pf̄ )2 − M2
F

, (C.6)

accounts for the propagators of the off-shell fermion in the two diagrams of Fig. 16. The two

diagrams have opposite sign, resulting in the sign between the two terms in ∆, because of the

different momentum flow through the intermediate fermion line. In the center-of-mass frame,

the width becomes

Γ(A2H → A1HfRf̄R) =
(g1g2)

2

128π3
M2 I+(M2,M1,MF ) (C.7)

where we defined

I±(M2,M1,MF ) =

∫ µ◦

0
dEf

∫ Emax
f̄

µ◦−Ef

dEf̄

2EfEf̄ ± M2

(

µ◦ − Ef − Ef̄

)

M2
2 (µ⋆ + Ef )2(µ⋆ + Ef̄ )2

(

Ef − Ef̄

)2
. (C.8)

The function I− is introduced for later convenience, µ◦ and Emax
f̄

are given in Eqs. (C.2) and

(C.3), respectively, and

µ⋆ ≡ M2
F − M2

2

2M2
. (C.9)
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Let us now study the case where A2 has spin 1 (we label it by A2µ in that case) and

couples to one chirality of the fermions:

g2A2µFRγµfR + H.c. . (C.10)

The matrix element squared, averaged over the polarizations of A2µ and summed over the

spins of f and f̄ , is given by

|M|2
(

A2µ → fRf̄RA1H

)

=
2

3
(g1g2)

2

(

MF

M2

)2 [

2(Pf · P2)(Pf̄ · P2) + M2
2 Pf · Pf̄

]

∆2 , (C.11)

where P2 is the 4-momentum of A2H . Again, the two diagrams have opposite signs, resulting

in the form of ∆ given in Eq. (C.6). However, the sign difference in this case is due to the

pseudo-scalar coupling. The width in the center-of-mass frame is given by

Γ(A2µ → A1HfRf̄R) =
(g1g2)

2

384π3

M2
F

M2
I−(M2,M1,MF ) , (C.12)

where I− is the phase-space integral shown in Eq. (C.8).

The only other case relevant for the decays of the (1,0) particles discussed in Section 3

is that where A2 has spin 0 and pseudo-scalar couplings [see Eq. (C.4)], while A1 has spin 1

and a coupling

g1A1µFRγµfR + H.c. . (C.13)

The matrix element squared, summed over the polarizations of A1µ and the spins of f and

f̄ , is given in this case by

|M|2
(

A2H → fRf̄RA1µ

)

= 2 (g1g2)
2

(

MF

M1

)2 [

2(Pf · P1)(Pf̄ · P1) + M2
2 Pf · Pf̄

]

∆2 , (C.14)

where ∆ is defined in Eq. (C.6). The width in the center-of-mass frame is given by

Γ(A2H → A1µIRf̄R) =
(g1g2)

2

128π3
M2

M2
F

M2
1

[(

1 − 2µ◦

M2

)

I−(M2,M1,MF ) +
2µ◦

M2
I+(M2,M1,MF )

]

.

(C.15)

If the heavy particles are approximately degenerate, which is the case for the (1,0) par-

ticles studied in this paper, then µ◦ ≪ M2 and µ⋆ ≪ M2 (which implies µ◦ ≈ M2 − M1 and

µ⋆ ≈ MF − M2), and the double integrals of Eq. (C.8) may be performed analytically:

I+(M2,M1,MF ) =
−8

M3
2

[

µ⋆
µ◦ + µ⋆

µ◦ + 2µ⋆

(

µ2
◦ + 5µ◦µ⋆ + 5µ2

⋆

)

ln

(

1 +
µ◦

µ⋆

)

− µ◦

12

(

µ2
◦ + 30µ◦µ⋆ + 30µ2

⋆

)

] [

1 + O

(

µ◦

M2
,

µ⋆

M2

)]

. (C.16)

A simple relation between the I± functions holds at leading order in 1/M2:

I− = 3I+

[

1 + O

(

µ◦

M2
,

µ⋆

M2

)]

. (C.17)
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It is also useful to note that for µ◦ ≪ M2 and µ◦ ≪ µ⋆,

I+(M2,M1,MF ) =
µ7
◦

105M3
2 µ4

⋆

[

1 − 2
µ◦

µ⋆
+

µ◦

M2
+ O

(

µ2
◦

µ2
⋆

,
µ2
◦

M2
2

)]

,

I−(M2,M1,MF ) =
µ7
◦

35M3
2 µ4

⋆

[

1 − 2
µ◦

µ⋆
+

5µ◦

3M2
+ O

(

µ2
◦

µ2
⋆

,
µ2
◦

M2
2

)]

. (C.18)

This very strong dependence on µ◦ ≈ M2 − M1 is somewhat surprising. The phase-space

integrals of Eq. (C.8) give three powers of µ◦, and the matrix element squared appears at

first sight to give only one more power of µ◦. However, the relative sign of the two diagrams

forces a cancellation of the leading term within ∆ [see Eq. (C.6)], so that ∆2 gives the
(

Ef − Ef̄

)2
factor in Eq. (C.8), which accounts for two more powers of µ◦. Furthermore, the

integration over Ef̄ cancels the leading term in the µ◦ expansion of the numerator of I±.

The resulting dependence on the 7th power of µ◦ implies that the decay width is extremely

suppressed, if A2 and A1 are more degenerate than the F − A2 pair.

The decay widths given in Eqs. (C.7) and (C.15) are used in Section 3 for computing the

branching fractions of the spinless adjoints, while the decay width of Eqs. (C.12) determines

the branching fractions of the (1,0) hypercharge vector boson.
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